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Numerical study of slightly viscous flow 

By ALEXANDRE JOEL CHORIN 
Department of Mathematics, University of California, Berkeley 

(Received 18 September 1972) 

A numerical method for solving the time-dependent Navier-Stokes equations 
in two space dimensions at high Reynolds number is presented. The crux of the 
method lies in the numerical simulation of the process of vorticity generation 
and dispersal, using computer-generated pseudo-random numbers. An applica- 
tion to flow past a circular cylinder is presented. 

1. Introduction 

form 
The Navier-Stokes equations in two space dimensions can be written in the 

atC + (U . v) g = ~ - 1 ~ 6 ,  (1 a )  

A+ = -5, ( l b )  

~ = - a  g + 3 v =  az+, ( Ic)  

where u = (u,v) is the velocity vector, r = (x, y) is the position vector, t is the 
time, $ is the stream function, 6 is the vorticity, A = V2 is the Laplace operator 
and R is the Reynolds number. R is assumed to be so large that finite-difference 
methods are difficult to  apply. Equations (I)  are to be solved in a domain D, 
not necessarily finite, with boundary aD, and their solution must satisfy the 
boundary conditions u=O on aD 
and the initial condition 

(2) 

u(x, y, t = 0) given in D. (3) 

Consider in particular the problem of flow past a cylinder of finite cross- 
section D'. In  the vicinity of its boundary aD a boundary layer will form, whose 
thickness will be proportional to R-3 (see, for example, Schlichting 1960, p. 109). 
Consider furthermore a finite-difference method whose grid is characterized near 
the boundary layer and in the wake by a mesh width 6. Since it is presumably 
necessary that a few mesh points fall within the boundary layer, we find that the 

62R = O(1) (4) 
condition 

must be satisfied. Analysis (Chorin 1 9 6 9 ~ )  suggests the more stringent condition 

6R = O(1). (5 )  

Conditions similar to (4) and (5) were given by Keller & Takami (1966); they 
indicate that at Reynolds numbers of practical significance the number of mesh 
points as well as the amount of computational labour required to obtain a solution 
would be prohibitive. In  practice, insuperable difficulties are encountered at 
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Reynolds numbers of a few hundred. It is therefore of interest to develop a grid- 
free numerical method in which the values of the velocity field near a boundary 
are not all computed but are merely sampled, with computational effort concen- 
trated in regions of greatest interest. We shall now present such a method, which 
relies on a numerical simulation of the process of vorticity generation and dis- 
persal, using computer-generated pseudo-random numbers. A summary of this 
method was presented in Chorin (1972). 

2. Principle of the method 
Consider .first the flow of an inviscid fluid (i.e. R = a). Equations (1) reduce to 

D(/Dt = 0, A$ = -6, (6) 

where D/Dt denotes a total derivative. One could think of solving equations (6) 
in the absence of boundaries by partitioning the vorticity [ into a sum of blobs, 

i.e. writing N 

6 = ZEj) (7 )  
j=1 

where the functions tj have small support, i.e. vanish outside a small region (or 
blob) around a point rj. $will then have the form 

For Ir - rjl large, $j will tend to the form 

where Ir-rjJ denotes the length of the vector r-rj. The expression (9) is the 
stream function of a point vortex; we are thus assuming that distant blobs affect 
each other as if they were point vortices of appropriate strength &. Neighbouring 
vortex blobs, however, affect each other’s motion unlike neighbouring vortices, 
in particular, the velocity field should remain bounded, while the velocity field 
induced by a point vortex becomes unbounded near the vortex (Batchelor 1967, 
p. 95). If the blobs are small, one can assume that the velocity changes little 
over their area and, furthermore, that the amount of vorticity they contain, 
&, is small, so that their effect on their immediate neighbours is small. These 
assumptions have now been justified by Dushane (1973). The gist of the analysis 
is as follows: Euler’s equations are written in integral form, and it is then shown 
that the right-hand sides of equations ( 10) below are rectangle-rule approxima- 
tions to the resulting integrals. From this fact, it is deduced that the error con- 
verges to zero with the area of the largest of the supports of the &.. Thus we write 

- 

where $O(r) is a fixed function of r such that - (1/2n) log r for r large, 
as r+O,  



and we have 
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N -  
[ =  Egj,$, [:= -A?,P(r-rJ. 

j=1 

The motion of the vortex blobs is then described by 

axi - a ? p  
dt j+i 

- = - X & a y  (r-rj) ( i=  1 ,..., N),, 

787 

where (xi, yi) are the components of ri. This construction can be summarized as 
follows: if we consider a collection of vortices having a structure and density 
such that their density approximates the initial vorticity density, and if their 
motion is determined by equations (lo), then their density will continue to 
approximate the vorticity density at later times. This statement indicates how 
a small viscosity can be taken into account through a judicious use of the reIa- 
tionship between diffusion and random walks (see, for example, Einstein 1956, 
p. 15; Wax 1954, p. 9). Consider the diffusion equation 

a- = R - W ,  [ = 8% Y, t ) ,  

with initial data [ ( 0 )  = [(x, y, t = 0). A solution of this equation using random 
walks can be obtained as follows. Distribute over the x, y plane points of masses 
Ei and locations ri = (xi, yi), i = 1, ..., N,  N large, in such a way that the mass 
density approximates [(O). Then move the points according to the laws 

xp+1 = xi" +ql, y?+l = Yi" + r2, ( I l a , b )  

where ql and rz are Gaussianly distributed random variables with zero mean 
and variance 2k/R, k being the time step, and where x: E xi(nk) and y: = y,(nk). 
Then the mean density after 72 steps (1 1) will approximate cn = [(nk). An algo- 
rithm for sampling ql and qz is readily designed (see, for example, Paley &Wiener 
1934, p. 146). Boundaries on which 6 is prescribed are readily handled by main- 
taining a constant density across them and allowing points from both sides to 
cross a t  will. (For analyses, see Einstein (1956) and Wax (1954).) 

Now approximate equations (10) by an algorithm of the form 

x?+1 = x? + Eund, y;+1 = yi" + Evn.), (12% b) 

where un,* and vn,) approximate the right-hand sides of equations (lo), k is 
a time step and xp = x(nk) and y: = y(nk)  are as above. Then the vorticity 
density generated by the motion of the vortices according to the laws 

x;+1 = xi" + kU"'4 + ql, (13a) 

y;+1 = y?+kvn*t+l;/z (13b) 

will approximate the solution of equations (1). 
Place in the flow an obstacle with boundary aD. I n  the case of an inviscid 

flow only the normal component of u can be required to vanish on the boundary. 
This requirement can be satisfied by adding to the flow induced by the vortices 
a potential flow with velocity on the boundary so designed that it cancels the 
normal velocity due to the vortices. This potential flow can be found by solving an 
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integral equation on 8 0  (see Kellogg 1929, p. 31 1) and does not require the imposi- 
tion of a grid on D.  For details, see below. When R is finite, the tangential com- 
ponent of u has to vanish on 8D as well. Suppose that at some time t the flow we 
have so far, which is the sum of the flow due to the vortices and of a potential 
flow, fails to satisfy this second boundary condition. The effect of viscosity 
will be to create a thin boundary layer which will ensure a smooth transition 
from the boundary to the flow inside D. The vorticity in that boundary is readily 
evaluated; it can then be partitioned among vortex blobs and the latter can be 
allowed to diffuse according to the laws (13). Once this has occurred, and 
vn,4 will be small, and in the neighbourhood of a boundary the random component 
of equations (13) will be dominant. When a vortex, new or old, crosses 8 0  it  
disappears. This process imitates the physical process of vorticity generation (see 
the discussion in Batchelor (1967, p. 277)). 

It is clear that our method can be applied to flows in finite domains as well 
as to flows in exterior regions. The example of flow past an obstacle does, however, 
indicate an advantage of our method: no asymptotic expansion of the solution 
far from the body need be known in advance. 

3. Implementation of the method 
We shall now give details of the algorithm just outlined by presenting an 

explicit form for the blob stream function $O(r) and a construction of unit and 
vn,t to be used in (13). The method of calculating the potential component of the 
flow will be presented in the next section. 

Consider blob stream functions of the form 

(2n)-110ge ( r  2 u), 
= {( 2n)-lc/u (c <u), 

where r = Irl and u is a cut-off length, to be determined later. The reason for 
considering this particular form will appear below. The total circulation around 
a vortex of this form is 1, and the associated velocity field is continuous and 
bounded. Assume that a t  time t = nk we have a velocity field un with vorticity 

approximated by N -  
Cn = - C &A$O(r-rj) (A = V2). 

We now present a sequence of steps which will yield ta+l. 
Divide the boundary aD into M segments of equal length h, with centres 

Qi, i = 1, ..., M ;  let the co-ordinates of Qi be (Xi,&). Let ug = (ug, vc) be the 
velocity induced by the vortices present at time t = nk; we have at  r = (x, y) 

j=l 

where r j  = [(xi - x ) ~  + (yj - y)2]4, El is a sum over all vortices such that c j  > CT 
and 2, is a sum over all vortices such that ci < c. Let n = (nl, n2) be the outward 
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normal to aD. We h d  a potential flow up such that up.n = - u f . n  (at Qi, 
i = 1, ..., M ) .  The details of the evaluation of up will be presented in the next 
section. up + us satisfies the normal boundary condition on 80. We write 

U".* = (U"'*, ?I".+) = up + U f ,  

and use this velocity field in equations (13) to advance the position of the exist- 
ing vortices; those vortices which cross aD are eliminated. 

Let s be a unit vector tangent to aD. The total vorticity in the boundary layer 
which appears when the condition u.s  = 0 is applied is (up+ug).s  per unit 
length of 80. We now partition the resulting vortex sheet into M blobs, centred 
at the Qi. We evaluate (up +us). s at Qi, and assign to the newly created vortices 
the vorticity = (up + uf) . sh. The newly created vortices cannot be point vor- 
tices, since the flow field in the neighbourhood of a point vortex is very different 
from that near a vortex sheet; in particular, it is not bounded, while in the neigh- 
bourhood of a vortex sheet, the velocity does remain bounded, with its tangential 
components suffering a jump as the sheet is crossed. It is clear that an array of 
vortices with the structure (14) will approximate these features, since if one draws 
a line through the centre of such a vortex the velocity field where r < CT has a 
constant magnitude and changes sign abruptly at the centre. Furthermore, as a 
vortex of this structure leaves the surface, its induced velocity field must exactly 
annihilate the tangential velocity at the boundary. This condition can be satis- 
fied if 

and thus the cut-off r is determined. The newly created vortices then move 
according to the laws (13); those which leave the fluid disappear; the evaluation 
of tn+l is complete. 

The use of equations (15) amounts to an apparently cumbersome method of 
solution of Poisson's equation. However, the method is intended for use in prob- 
lems where intense vorticity is confined to small regions, which makes (15) usable, 
and the alternative methods of solution employ a grid, which would destroy the 
principle of our method. 

CT = h/2n, (16) 

4. The evaluation of the potential component of the flow 

tial component up is evaluated (see Smikh 1970). The equation to be solved is 
To complete the description of our algorithm, we now describe how the poten- 

A$ = -5 = - V  X U  = 0, (17) 

subject to the boundary condition 

u . n = - u f . n  on aD. 

Equation (1 7)  can be satisfied by a flow of the form 

where q.5 has the form 
u = vq5, 
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where q is a point on aD, with co-ordinates (zq, yq), and 

R(q) = [(x - zqlZ + (Y - Y,)21+. 
a(q) is a single-layer source (see Kellogg 1929, p. 311)) and satisfies the integral 
equation 

a(q’) an(log R(q’)) dq’ = - 2ug. n, (20) 

where a, denotes a derivative in the direction of n. We approximate (20) by a 
system of linear equations. A source of intensity 1 at Qi induces at the point 
Qj, i =/= j, a velocity field with components 

.. I xj-xi .. 1 q - y ,  
U,(Zj) = -- ~ , U2(tj)  = -- - 27T qj 27r R:j ’ 

R:j = (Xj - Xi)’ + (5 - Y,)’. 
We approximate a(q) by the M-component vector a = (a(&,), ..., a(QM)),  which 
must thus satisfy the matrix equation 

Aa = b, 
where the components of b are the values of - ug . n evaluated at  the points Qi, 
and the matrix A has the components 

aij = Ul(ij) n, + Uz(ij) n2 (i =+ j) { a.. zz = +h-1 (i = I )  ..., N ) .  

The discrete form of (18) and (19) is then 

where if r(Qi)  b +h, 

+h-la(Qi)n(&,) if y(Qi)  < @, 

where r(Qi) is the vector joining Qi to r, and r(Qi) = lr(Qi)/. 

5. Heuristic considerations 
The crux of our method is the representation of the flow by a randomly placed 

set of vortices of similar finite structure. This representation was suggested by 
the author’s work on turbulence theory (Chorin 1969b, 1970,1973)) and it may be 
of interest to summarize the relevant considerations. 

Much of the theory of turbulence is concerned with the behaviour of the 
spectrum of the flow at large frequencies (see Batchelor 1960, p. 103). The 
reason is that this behaviour seems to be independent of the particular flow under 
consideration. The hope is that an understanding of this behaviour would 
suggest a way to incorporate these frequencies into a numerical method; h i t e -  
difference methods in particular can handle only a bounded range of frequencies. 

The high-frequency range of the spectrum is associated with the less smooth 
part of the flow. The crucial assumption in the author’s work is that the loss of 
smoothness in incompressible flow does not occur uniformly in each flow but 



Numerical study of slightly viscous $ow 791 

is localized in certain regions, much in the same way as the high-frequency com- 
ponents of one-dimensional compressible flow are occasioned by the appearance 
of shocks. An argument was given to the effect that these rough regions consist 
of circular vortices; in order to match the observed spectra these circular vortices 
must have a core of universal structure. Their locations may be thought of as 
random. By constructing the flow from such elements, one ensures that the high- 
frequency range is taken into account. It is interesting to note that similar 
considerations can be applied to Glimm’s (1965) solution of nonlinear hyperbolic 
systems. 

The question now arises as to what is the order of magnitude of the errors 
induced by our approximation. In  the case of infinite R (inviscid flow), we have a 
fully deterministic method of solving Euler’s equations, and as long as k is of 
order k, we expect the overall error to be of O(k) .  In  the case of finite R, the velo- 
city at any one point or at any one instant is a random variable, and convergence 
can be expected only in the mean, i.e. as one averages over large regions, or over 
long times or over ensembles.In the mean, diffusion is represented without error; 
the crucial problem is to assess the effect of the interaction between the random 
and deterministic parts of equations (13). As far as the determination of inertial 
effects is concerned, the random variables rl and r2 can be viewed as harmful 
perturbations. The standard deviation of y1 and r2 is [2k/R)4. After n steps, the 
total effect of the random perturbations will be to induce a displacement of order 

[n. 2lc/R]4 = O(R-4) 

in the location of the vortices. If this can be identified with an error in the evalua- 
tion of the nonlinear terms, its magnitude will be of O(R-t) .  We thus conjecture 
that the mean error in our calculation is of O ( k )  + O(R-)). The second term in this 
estimate may appear shocking, since it does not depend on k. However, the 
relations (4) and (5) indicate that, if R f  is not smalI, a difference method may be 
used and our algorithm becomes unnecessary. We therefore do not expect valid 
solutions at low R. 

At the other extreme, some difficulty may be expected at  very high Reynolds 
numbers. This is so because the boundary layers formed by the algorithm are 
made up of a few bouncing vortices and are thus noisy; turbulence effects should 
therefore appear at too small a value of R, as they do, for example, in noisy 
wind tunnels or around rough bodies. 

6. Application: flow past a circular cylinder 
Consider a circular cylinder of radius 1, immersed in a fluid of density 1, to 

which is imparted a t  t = 0 a constant velocity of magnitude 1. The Reynolds 
number based on cylinder radius is R = v-1, where v is the viscosity. (In the 
literature one encounters a Reynolds number R‘ = 2R based on cylinder dia- 
meter.) Let the origin 0 be fixed in the centre of the cylinder’s base, with the 
negative-x axis pointing in the direction of the motion. In  the resulting frame 
of reference the velocity at  infinity is (1 ,0) ,  and the cylinder is a t  rest. aD is the 
circumference of the base. 
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Divide 8 0  into M pieces of length h = 2n/M. The cut-off length is (T = h/2n = 
1/M. One of the important functionals of the flow is the drag coefficient CD, 
which in our units is simply the force per unit length of the cylinder. We have 

c, = c,, + c,, 
where C,, is the skin drag, given by 

4 n  

c,, = -+J ga sin e ae, 
a, 

and C, is the form drag, given by 
* 

c, = J ,,pa COS e ae, 

where r cos 8 = x, r sin 8 = y, Ed is the vorticity on aD and pa is the pressure on 80. 
pa can be evaluated using the formula 

where a,[ is the normal derivative of C; and the integration is carried out along 
aD. The problem a t  hand is to evaluate [ and a,< given our random array of 
vortices. Introduce the regions Aj and A t  defined by 

Aj = {x, yI 1 G r < 1 +,u, ( j  - 4) 2n/M < 0 -= (j  + 4) 2n/M},  

A: = { ~ , y l l + p  < r < 1+2p, ( j -4)2n/M < 8 < ( , j++)2n/M},  

where ,u = (2k/R)*  is the standard deviation of rl and vz. [(A,) and C(AT) are 
defined as the sums of the vorticities & associated with vortices whose centres 
fall within Aj and Af divided by the areas of A, and Af respectively. We now 
identify [ (A,)  with [ (Q,) ,  and ([(Af) - [ (A, ) ) /p  with a,<(&,). It is worth empha- 
sizing that the grid just introduced is used not to advance the calculation, but 
only to diagnose its outcome. <(A,) and [(A:) are random variables, and can be 
expected to have substantial variance; we therefore introduce the averaged drag 

CD(t, T), defined by t 

cD(tt = j t -TcB(t)  (24) 

where CD(t) is the drag CD at time t .  The integrals (21)-(24), can be evaluated 
through the use of the trapezoidal rule. 

The time step k and the number M of vortices created per time step remain to 
be chosen. As k decreases M must increase; this is so because the deterministic 
component of the right-hand sides in equations (13) is proportional to k ,  while 
the random component has standard deviation proportional to ,/k. Thus as k 
is decreased, each vortex has an increasing number of opportunities to cross 8 0  
and disappear; since a minimum number of vortices must be maintained in the 
fluid, more and more must be created. For a given k, M is chosen so large that a 
further increase does not affect the solution. k must be chosen so that a decrease 
in k will not affect the flow; the solution is rather insensitive to k. After some 
experimentation the value k = 0-2 was picked. The required M is 20. All the 
calculations below were made with these parameters. 
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FIGURE 1. Flow at (a) R = 1000, t = 12; (b)  R = 1000, 
t = 24; (c) R = 100, t = 16. 
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For figures 1 (a)  and ( b )  the flow at R = 1000 at two times is visualized. The 
domain is divided into squares of side 8 = 0.3; if a square contains no vortices 
nothing is printed; if the sum of the vortices in the square is positive a cross is 
printed.; if the sum is negative a circle is printed. Note the deformation of the 
circle by the computer printer. This visualization may be crude, but it is in 
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t 

2 
4 
6 
8 

10 
12 
16 
20 
24 

c D ( h  t )  

0.993 
1.118 
1.020 
1.056 
1.068 
1.034 
1.014 
1.049 
1.060 

c D ( h  2) 

0.993 
1.232 
0.833 
1.158 
1.118 
0-863 
0-894 
1.216 
1.073 

TABLE 1. Average drag as a function of time at R = 1000 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

10.8 
6.0 

-21.3 
8.1 

- 25.4 
7.2 

52.1 
22.7 
35.7 
20.6 
- 9.5 
- 30.9 
- 52.6 
- 24.8 
- 19.4 
- 9.1 
- 8.3 

2.3 
11.6 
5.1 

14.4 
5.9 

- 20.9 
7.9 

- 24.9 
7.0 

51-1 
49.3 
35.0 
20.2 
- 6.4 
- 30.3 
- 51.6 
- 41.9 
- 49.3 
- 8.9 
- 11.4 

2.2 
11-4 
10.0 

TABLE 2. Vorticity distribution a t  R = 1000, t = 10 

keeping with the spirit of our method, in which nolocation is certain; thevisualiza- 
tion is of course most inadequate at boundaries. In  table 1 the values of c(Aj) and 
g(Ai+) for t = 10 and R = 1000 are tabulated. Separation can be detected when 
<(Aj) and E(Aj+) differ appreciably. It can be seen that the separation of the 
boundary layers occurs (asymmetrically) around 8 = 126" and 0 = 288". The 
values of CD(t, t) and CD(t, 2) at  R = 1000 are tabulated in table 2. The numbers 
printed yield a mean drag of 1.04, in excellent agreement with experiment 
(Schlichting 1960, p. 16). 

We now decrease R. At R = 500 we obtain a mean drag C, = 1-15. In figure 
1 (c) we visualize the flow at R = 100, which is at the lower limit of applicability 
of the method; 8 = 0.25. CD(t, 2) climbs to a maximum of 2.80, and then oscillates 
between 1.30 and 1-18. (The experimental values lie between 1-20 and 1-25.) 
The skin drag is 0.26 f 0.02; the experimental value is 0.28. 
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As we increase R we find that C, = 1.09 at R = 5000; this rise is of course 
experimentally observed. At R = 10000, CD is approximately 0.87, about + 
of the experimental value. We can conjecture that the rough representation of 
the boundary layer triggers a premature onset of the drag crisis, analogous to the 
effect of a rough boundary or a noisy flow. This conjecture is apparently con- 
firmed by the fact that, at R = 100000, C, = 0.29, in good agreement with the 
experimental value beyond the drag crisis. However, more thought is required 
before we me ready to claim that the method is able to follow a transition to 
turbulence. Beyond R = 10000 the vortex street behind the cylinder becomes 
disorderly at  about 10 units of length behind the cylinder. In  all our calculations, 
the number of vortices in the fluid at t = 30 is approximately 300, and it takes 
about 12 minutes of CDC 6400 time to follow the evolution from t = 0 to t = 30.t 

7. Conclusion and further work 
We have presented a numerical method containing a random element which 

makes possible the analysis of flow a t  high Reynolds number with comparatively 
little effort. The price paid for this achievement is the loss of pointwise conver- 
gence in either space or time. The method will be applied to other problems be- 
sides the one presented here, but the most fascinating subject for further research, 
both theoretical and numerical, is the possibility that this method is able to 
simulate the transition to turbulence. 

Another problem under investigation is the development of a similar method 
for three-dimensional flow problems, in which vortices will be replaced by vortex 
lines. 

This work was carried aut while the author was Visiting Miller Research Professor 
at  the University of California, Berkeley, with partial support from the Office 
of Naval Research under Contract no. N00014-69-A-0200-1052. 
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